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Abstract Boundary conditions for the slip velocity of inelastic, frictionless
spheres interacting with bumpy walls are derived via discrete element method
simulations of Couette granular flows. The bumpiness is created by gluing
spheres identical to those flowing in a regular hexagonal array to a flat plane.
Depending on the particle inelasticity and bumpiness, the characteristics of the
flow range from simple shearing to plug flow. At low bumpiness - small distance
between the wall-particles - the ratio of particle shear stress to pressure is a
non-linear function of the slip velocity and presents a maximum. At high
bumpiness, the bumpy plane behaves as a flat, frictional surface and the stress
ratio saturates to a constant value for large slip velocity.

Keywords Granular flow · Boundary condition · Kinetic theory

1 Introduction

Continuum mathematical modeling of granular materials, capable of quantita-
tively reproducing their behaviour in a large range of flow regimes, seem now
feasible. A large amount of work has been dedicated to determining appropri-
ate constitutive relations for, e.g., the particle stress tensor.

One of the possible approaches is based on kinetic theory of dense granular
gases [1,2], recently modified to take into account the role of friction [3,4],
velocity correlation induced by inelasticity in collisions [5] and finite particle

D. Berzi
Politecnico di Milano, Milano 20133, Italy
Tel.: +39-02-23996262
Fax: +39-02-23996298
E-mail: diego.berzi@polimi.it

D. Vescovi
University of Twente, Enschede 7500AE, The Netherlands



2 Diego Berzi, Dalila Vescovi

stiffness [6,7]. Conversely, considerably less efforts have been put on the anal-
ysis of boundary conditions. Given that many granular flows of interest have
a thickness of a few diameters, the boundaries strongly influence the problem.

Theoretical expressions for slip velocity and fluctuation energy flux are
available for rigid spheres interacting with bumpy walls [8] - where the bumpi-
ness is due to hemispheres attached to a flat surface in a regular fashion - and
flat, frictional surfaces [9,10]. Richman [8] derived the boundary conditions
for bumpy walls assuming that the particles were nearly elastic and that the
ratio of the slip velocity to the square root of the granular temperature - mean
square of the particle velocity fluctuations - was less than unity. Jenkins et
al. [11] analysed the case of nearly elastic spheres flowing over a bumpy wall
in which the bumpiness was due to hemicylinders perpendicular to the flow
direction attached to the wall, removing any limits on the value of the slip
velocity. Unfortunately, that work is still unpublished, but those boundary
conditions have been reported in Ref. [12].

Here, we extend our previous work [13] on discrete element simulations of
steady flows of identical, inelastic, frictionless spheres between parallel, bumpy
planes in absence of gravity. The particle motion is driven by one of the plane
moving at constant velocity (Couette granular flow). The bumpiness is due to
spheres, identical to those flowing, attached to the planes in a regular hexag-
onal array. By changing the particle inelasticity and the distance between the
wall-particles, we infer expressions for the slip velocity that phenomenologi-
cally extend the analysis of Richman and Jenkins et al. for the case of low
bumpiness. At high bumpiness, we show that the bumpy wall made of fric-
tionless spheres behaves as a frictional, flat surface.

2 Simulations and results

We simulate the steady shearing flow of monodispersed, frictionless spheres
(of density ρp and diameter d) between two parallel, bumpy planes in absence
of gravity through the Discrete Element Method [13]. The particles are char-
acterized by a coefficient of collisional restitution e (negative ratio of post- to
pre-collisional normal relative velocity between two colliding spheres) and by
the stiffness k of the linear spring in the spring-dashpot model used to repre-
sent the particle interactions in the DEM simulations. The flow configuration
is depicted in Fig. 1. The coordinates along the flow, shearing and vorticity
directions are x, y and z, respectively. We use periodic boundary conditions
along x and z and we move the upper plane at a constant velocity V , while
the other is at rest. The walls are made bumpy by gluing spheres, identical to
the flowing particles, in a regular, hexagonal fashion. In all simulations, the
distance H between the edges of the particles glued at the moving and resting
walls has been kept constant and equal to 18 diameters. The bumpiness of the
walls can be measured by the distance l between the edges of adjacent parti-
cles glued at them (Fig. 1). Equivalently, we can use the angle ψ, defined as
sinψ = (d+l)/(2d) [8]. The minimum bumpiness is when l = 0, i.e., ψ = 5π/30,
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Fig. 1 Sketch of the flow configuration with the frame of reference.

corresponding to a minimum effective penetration angle, in the hexagonally
packed wall-spheres layer, of about π/5. Conversely, when ψ ≥ π/3, the flow-
ing spheres can fully penetrate in the gaps between the particles glued at the
walls.

We set the particle density and diameter and the velocity of the moving wall
equal to unity, so that all the variables in the problem are dimensionless. We
perform the simulations with a fixed k = 2 · 105 and we change the coefficient
of restitution e in the range 0.2 to 0.98, the bumpiness ψ in the range 5π/30 to
12π/30 and the spatial-averaged volume fraction in the domain ν̄ in the range
0.2 to 0.44. We uniformly divide the domain along the y-direction in slices
of thickness less than one diameter and we perform space-time averaging in
every slice to obtain profiles of particle x-velocity, u, solid volume fraction,
ν, and granular temperature, T . We indicate with uw, νw and Tw the values
of particle x-velocity, solid volume fraction and granular temperature at a
distance of half a diameter from the top of the particles glued at the resting
wall. This is the location at which the boundary conditions for the shearing
flows of spheres over bumpy planes derived by Richman [8] apply and uw is
the slip velocity. We also measure the particle pressure p and shear stress s
(both constant in the flow in absence of gravity due to momentum balance).

In a previous work [13], we showed that, at a given bumpiness, there is a
minimum value of the coefficient of restitution for the simulation to reach a
steady state. Lower values of the coefficient of restitution imply a collapse of
the particles in the core and lack of collisions with the bumpy walls: energy
cannot be therefore supplied to the flowing particles from the boundaries and
the kinetic energy of the particles decays following the Haff’s law [14] (Homo-
geneous Cooling State, HCS). Here, we have investigated a larger portion of
the parameter space and we are able to present a more complete picture of the
flow regimes encompassed by granular Couette flows between bumpy planes.
The vaue of the slip velocity is determined by the combination of coefficient of
restitution and bumpiness, at a given value of ν̄. Figure 2 represents the con-
tour plot of uw in terms of e and ψ when ν̄ = 0.4. For symmetry reasons, the
value of the slip velocity lies in the range between 0 and 0.5. Zero slip velocity
implies a linear velocity profile and uniform distributions of solid volume frac-
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Fig. 2 Contour plot of slip velocity when ν̄ = 0.4. White and black areas represent the
regions of existence of simple shearing and homogeneous cooling state, respectively.

tion and granular temperature, i.e., simple shearing. Slip velocity equal to 0.5
implies the existence of a plug flow in the core, the lack of contacts between
the walls and the flowing particles and the already mentioned HCS. In be-
tween these two extremes, there are a number of intermediate states. Figure 2
indicates that granular Couette flows reach HCS for rather low values of the
coefficient of restitution and low bumpiness. The condition of simple shearing
is instead possible for every value of e in a range of bumpiness which narrows
down as the coefficient of restitution decreases.

We now analyse separately the two extreme cases of low (ψ ≤ 8π/30) and
high bumpiness (ψ ≥ 10π/30) for the simulations which reach steady state. It
is worth recalling that when ψ exceeds π/3 the flowing particles can actually
fall and be traped in the gaps between the wall’s spheres. The case ψ = 9π/30
is intermediate between these two extremes.

2.1 Low bumpiness

As already mentioned, Richman’s [8] analysis provides an expression for the
slip velocity of nearly elastic spheres flowing over a wall at which hemispheres
are glued in a regular, hexagonal array:

uw

T
1/2
w

=
(π

2

)1/2

f
s

p
, (1)

where f is a rather complicated function of the bumpiness and the solid volume
fraction νw. Equation (1) is valid for nearly elastic spheres and small (less than

unity) values of uw/T
1/2
w . A consequence of the latter assumption is the linear

relation between the stress ratio s/p and the slip velocity.
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Jenkins et al. [11] analysed the case of nearly elastic spheres flowing over
a wall in which hemicylinders perpendicular to the flow direction are glued.

By not assuming small values of uw/T
1/2
w , they obtained a non-linear relation

between the stress ratio and the slip velocity. Their expression, as reported in
Ref. [12], reads

uw

T
1/2
w

=
(π

2

)1/2 1

ψ cscψ − cosψ

s

p
C, (2)

where C = 1+
(

ψuw/T
1/2
w

)2

/3. Equation (2) is a simple expression that can

be easily employed in continuum mathematical models of granular flows. Here,
we want to check if it holds also for the case of inelastic spheres impacting like-
spheres glued at the walls, only by modifying the dependence of C on the scaled

slip velocity ψuw/T
1/2
w . Inverting Eq. (2), and using the numerical values of

uw, Tw, s and p from the simulations for different ψ and ν̄, we can obtain C

as function of ψuw/T
1/2
w . Actually, we did not emply the value of Tw obtained

from the simulations, because it is now clear that the granular temperature is
very sensitive to the averaging method, especially close to the walls where the
velocity gradients are important [15,16]. In our previous work [13], we have
shown that the relation between particle pressure, granular temperature and
solid volume fraction, i.e., the equation of state, away from the walls is well
predicted by kinetic theory [2],

p =
[

1 + 2(1 + e)ν2g0
]

T, (3)

if the radial distribution function at contact g0 suggested by Vescovi et al. [13]
is employed:

g0 = f
2− ν

2 (1− ν)
3
+ (1− f)

2

νs − ν
, (4)

where

f =







1 if ν < 0.4,
ν2 − 0.8ν + νs (0.8− νs)

0.8νs − 0.16− ν2s
otherwise.

(5)

In Equation (4), νs is the shear rigidity volume fraction, defined as the largest
volume fraction at which a randomly collisional granular material can be
sheared without force chains spanning the entire domain. For frictionless par-
ticles, νs is equal to 0.636.
To avoid the uncertainties in the granular temperature at the wall, we there-
fore obtain Tw by inverting Eq. (3) and using the more reliable numerical
values of solid volume fraction νw and pressure p. We nonetheless emphasize
that the usage of the measured values of the granular temperature would not
qualitatively change the results. Furthermore, we point out that in this work
we have chosen to assume a unique equation of state, valid anywhere in the do-
main. In so doing, we indeed disregard the influence of the walls on the radial
distribution function, which can be affected by layering effects. We are aware
that this approach does not completely represent the physics of the problem
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Fig. 3 Coefficient C as a function of ψuw/T
1/2
w from the present simulations (circles) when

5π/30 ≤ ψ ≤ 8π/30 (all values of ν̄ and e). The solid line represents Eq. (6).

at the walls, but it has the big advantage of providing boundary conditions
that can be consistently applied to models in which the equation of state is
independent of spatial coordinates. Figure 3 shows a nice collapse of the values

of C as a function of ψuw/T
1/2
w , irrespective of the value of the coefficient of

restitution. A good fitting is obtained for

C = 8 +
1

7

(

ψ
uw

T
1/2
w

)3/2

. (6)

Defining the scaled stress ratio as

R =
(π

2

)1/2 ψ

ψ cscψ − cosψ

s

p
, (7)

and, using Eq. (6) in Eq. (2) and re-arranging, we obtain

R = ψ
uw

T
1/2
w

[

8 +
1

7

(

ψ
uw

T
1/2
w

)3/2
]

−1

. (8)

When the numerical values of the scaled stress ratio are plotted against the
numerical values of the scaled slip velocity (Fig. 4), it is even more evident the
collapse of the data for different values of bumpiness, coefficient of restitution
and average solid volume fraction and the good agreement of Eq. (8) with the
simulations. The non-linearity between the stress ratio and the slip velocity
- the scaled slip velocity is as large as 400 in our simulations - results in the

presence of a maximum R ≈ 1 for ψuw/T
1/2
w ≈ 25.
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Fig. 4 Scaled stress ratio as a function of scaled slip velocity from the present simulations
(circles) when 5π/30 ≤ ψ ≤ 8π/30 (all values of ν̄ and e). The solid line represents Eq. (8).

2.2 High bumpiness

The case ψ larger than 10π/30 is completely different. The stress ratio s/p
shows no significant influence of bumpiness or coefficient of restitution when

plotted versus uw/T
1/2
w (Fig. 5). The stress ratio initially increases linearly

with the slip velocity - seemingly having a non-zero value at uw = 0 (yielding)
- and saturates to a constant value of approximately 0.55 at large values of

uw/T
1/2
w . This behaviour resembles closely what theoretically derived with

spheres flowing over a flat, frictional surface [9]. In this sense, the limit value
0.55 represents an equivalent friction coefficient for very bumpy walls. It is
worth emphasizing that this frictional behaviour has been obtained in absence
of interparticle friction. We propose the following simple fitting of the data:

s

p
= min

(

0.1 + 0.01
uw

T
1/2
w

; 0.55

)

. (9)

The presence of a yielding value of the stress ratio, and the saturation to
a constant value at large slip velocities, is in accordance with experiments
on incline flows of glass spheres over rough surfaces [17]. Those experiments,
indeed, revealed that steady incline flows existed only in a range of angles of
inclination: for angles of inclination less than a minimum (corresponding to
the yielding value of Fig. 5), flows would decelerate and come to rest; for angles
of inclination larger than a maximum (corresponding to the saturation value
of Fig. 5), flows would accelerate indefinitely. The value 0.1 for the yielding
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Fig. 5 Stress ratio as a function of uw/T
1/2
w from the present simulations (circles) when

10π/30 ≤ ψ ≤ 12π/30 (all values of e). The solid line represents Eq. (9).

the stress ratio is very close to that of frictionless spheres obtained in simple
shearing [4].

3 Conclusions

We have numerically simulated, through the discrete element method, the
steady Couette flow of frictionless, inelastic spheres. We made the walls bumpy
by attaching to them spheres identical to those flowing. We have changed
the number of particles in the flow, the particle inelasticity and the distance
between the hexagonally placed wall-particles and measured the slip velocity as
a function of the local granular temperature, particle pressure and shear stress.
We have shown how the combination of bumpiness and particle inelasticity
causes the flow to have the characteristics of simple shearing, plug flow or
being intermediate between those two extremes. At low bumpiness, we have
obtained values of the slip velocity, scaled with the square root of the granular
temperature, much greater than one (as large as 400). As a consequence the
stress ratio is a non-linear function of the scaled slip velocity and presents a
maximum. At large bumpiness, the scaled slip velocity is only a function of
the stress ratio - independent of bumpiness and particle inelasticity. The stress
ratio initially increases linearly with the scaled slip velocity and then saturates
to a constant value. This behaviour is typical of flat, frictional surface. The
fact that an effective macroscopic frictional behaviour has been obtained by
adding frictionless bumps to a plane is reminding of microscopic models of
contact friction.
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